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Abstract

This paper presents a theoretical basis for estimation of mechanical anisotropy in homogeneous rocks containing shape fabrics
of rigid inclusions. The analysis is based on two types of viscous models: one containing linear fabrics of prolate (a > b = c )

inclusions (cf. L-tectonite) and the other containing planar fabrics of oblate (a < b = c ) inclusions (cf. S-tectonite). Models
show contrasting bulk viscosities in stretching (normal viscosity ) and shearing (shear viscosity ) parallel to the fabric. The axial
ratio R (= a/b ) and the volume concentration (rv) of rigid inclusions appear to be the principal parameters in determining the
viscosity contrast. In anisotropic models with linear fabrics, normal viscosity (Zp) increases monotonically with increase in R,

whereas shear viscosity (Zs) increases to a maximum, and then drops down to a near-stationary value. In anisotropic models
with planar fabrics, the normal viscosity increases little with increasing ¯atness of inclusions, but the variation assumes a steep
gradient when the latter is large. Shear viscosity, on the other hand, is relatively less sensitive to the shape of inclusions. The

ratio of normal and shear viscosities, conventionally described as anisotropy factor d, in both the models is always greater than
1, indicating that normal viscosity will be essentially greater than shear viscosity, irrespective of the axial ratio of inclusions
forming the fabric. Models with a linear fabric show contrasting normal viscosities in pure shear ¯ow along and across the

linear fabric. The anisotropy is expressed by the ratio of longitudinal and transverse normal viscosities (anisotropic factor s ). It
is revealed that the transverse viscosity is essentially less than the longitudinal viscosity, as observed in test models. 7 2000
Elsevier Science Ltd. All rights reserved.

1. Introduction

Rocks may be mechanically anisotropic due to the
presence of compositional layering or crystallographic
and/or shape fabrics of the mineral grains. The rheolo-
gical properties of such rocks are in¯uenced by the
mechanical anisotropy. It is, therefore, essential to
establish the nature and degree of mechanical aniso-
tropy in the rock to analyse its deformation behaviour
and path (Weijermars, 1992). Multilayered rocks with
layers of contrasting competence are the most well-
studied anisotropic materials in relation to di�erent

deformation processes, such as folding under layer-

parallel compression (Biot, 1965; Ramberg, 1964;

Cobbold et al., 1971), boudinage under layer-normal

compression (StroÈ mgard, 1973), or partitioning of

strain across layering (Treagus, 1988).

Viscosity of anisotropic rocks is a tensor quantity

(Cobbold, 1976; Honda, 1986; Weijermars, 1992). Wei-

jermars (1992) has shown that under layer-normal

compression, the sti� layers in a multilayer govern the

bulk viscosity (normal viscosity ), which, under layer-

parallel shear (shear viscosity ), is controlled by the soft

layers. The ratio of these two viscosities (anisotropic

factor d, Honda, 1986) is therefore, larger for larger

viscosity contrast between the sti� and the soft units in

the multilayer.

Studies on the mechanics of composite ®bre
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structure have shown that the bulk strength of ma-
terial depends greatly on the shape of sti� ®bres (Cox,
1952; Kelly and Tyson, 1965, Laws and McLaughlin,
1978, Ting, 1999). This paper, following the above line
of work, analyses the mechanical anisotropy of homo-
geneous rocks containing a linear or a planar fabric
de®ned by preferred orientation of prolate and oblate
rigid inclusions, respectively. The analysis takes into
account the e�ects of shape and volume concentration
of rigid inclusions on the normal (Zp) and shear viscos-
ities (Zs) with respect to the fabric, and determines the
anisotropic factor d (Zp/Zs). An additional parameter,
designated as the anisotropic factor s, is introduced to
describe the ¯ow anisotropy in lineated rocks, which is
the ratio of the viscosities in pure shear along (longi-
tudinal viscosity ZPL) and across (transverse viscosity
ZPT) the linear fabric (cf. Cobbold and Watkinson,
1981). The unequal ¯ow in viscous models containing
a linear fabric is tested with analogue model exper-
iments.

2. Theoretical analysis

2.1. Anisotropic models

The mechanical models under consideration consist
of spheroidal rigid inclusions in a homogeneous vis-
cous matrix. We assume that the matrix is Newtonian
viscous and the inclusions are non-clustering, non-
interacting and randomly distributed, but with a pre-
ferred orientation, giving rise to a shape fabric in the
bulk medium. The analysis is based on two types of
mechanical models: (1) linear (cf. L-tectonite) and (2)
planar (cf. S-tectonite) anisotropic models character-
ized by preferred orientation of prolate and oblate in-
clusions, respectively. The deformation considered is at
constant volume.

2.2. Bulk viscosity of a medium

Consider a volume, V, in the homogeneous viscous

Fig. 1. De®nitions of (a) normal viscosity Zp, (b) shear viscosity Zs and (c) longitudinal and transverse normal viscosities ZPL, ZPT.
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medium, undergoing pure shear deformation at a
strain rate, e. The rate of work to be done for the de-
formation of the volume under consideration is:

dE

dt
� 4Ze2V

(cf. equation 15(3) of Jaeger, 1969), where Z is the
coe�cient of viscosity of the embedding medium. If
the volume contains a rigid body, the mechanical
interaction of the rigid body with the matrix would
o�er resistance to deformation for which an
additional amount of work is to be done. In such a
case, the total energy required for deformation per
unit time is:

dE 0

dt
� dE

dt
� dw

dt
� 4

�
1� VP

V
f

�
Ze2V �1�

(cf. Je�ery, 1922), where Vp is the volume of the rigid
body and f is a geometrical function. The bulk vis-
cosity of the medium containing the rigid body can be
written as: Z

� � �1� rvf �Z, where rv is the volume
fraction of rigid body (Vp/V ) in the medium. The
value of f is 5/2 (shown later), if the body is spherical
in shape. The bulk viscosity of the medium then is
Z
� � �1� 2:5rv�Z (Einstein, 1911).
The bulk viscosity of the medium varies as the rigid

body deviates from a spherical geometry (Je�ery,
1922). Moreover, the bulk viscosities would be di�er-
ent in di�erent directions if there is a preferred orien-
tation of rigid non-spherical inclusions in the matrix.
The present analysis takes into consideration the two
components of bulk viscosity tensor with respect to
the fabric: normal viscosity and shear viscosity (Weijer-
mars, 1992). Normal viscosity refers to the viscosity of
the medium under pure shear with the principal axis of
shortening perpendicular to the fabric and shear vis-
cosity refers to that under shear parallel to the fabric,
respectively (Fig. 1).

2.3. Normal viscosity and shear viscosity

Let us ®rst consider that the anisotropic model is
deformed by pure shear with the principal extension
direction parallel to the a axis and no strain along
the b direction of inclusions (Fig. 1a). It can
be shown from Eq. (1) that the bulk viscosity of
the medium under this kinematic state, i.e. normal
viscosity, is:

Zp �
"
1� 1

2

rv

ab4
1

a 00

 
1� a

00
0

b
00
0

!#
Z �2�

where a0 ', a00 and b00 are shape factors. The ex-
pressions of the shape factors and the derivation of
Eq. (2) are given in Appendix A [Eqs. (A5a), (A5b)

and (A8)]. It may be noted that a0 '=2aÿ5/5 and a00
= b00, if the inclusions are spherical in shape (a = b ).
The bulk viscosity in Eq. (2) is then �1� 2:5rv�Z, as
discussed in the earlier section. The normal bulk vis-
cosity (Zp) in anisotropic models is obtained by substi-
tuting the expressions of a0 ', a00 and b00 [Eqs. (A5a)
and (A5b)] in Eq. (2). For convenience, we express the
bulk viscosity as a dimensionless quantity (the ratio of
bulk viscosity and matrix viscosity, Zp=Z), in terms of
the axial ratio of rigid inclusions �R � a=b).

In the linear anisotropic model:

Zp

Z
� 1

� rv

�1ÿ R2�52
R

"
2

2R
��������������
R2 ÿ 1
p �2R2 ÿ 5� � 3O

� 1

�2R2 � 1�Oÿ 6R
��������������
R2 ÿ 1
p

#
�3a�

where O� log��R�
��������������
R2 ÿ 1
p

�=�Rÿ
��������������
R2 ÿ 1
p

��
In the planar anisotropic model:

Zp

Z
� 1

� rv

�1ÿ R2�52
R

"
2

3cosÿ1Rÿ R
��������������
R2 ÿ 1
p �5ÿ 2R2�

� 1

�1� 2R2�cosÿ1Rÿ 3R
��������������
R2 ÿ 1
p

#
:

�3b�

We now consider that the anisotropic model is
deformed by a fabric-parallel shear (Fig. 1b). Under
this kinematic state, the bulk viscosity (i.e. shear vis-
cosity) can be shown to have the expression:

Zs �
�
1� 2rv

ab2�a2 � b2�
1

b 00

�
Z �4�

[see Eq. (A10) in Appendix A]. The shear viscosity in
Eq. (4) is (1+2.5rv)Z if the inclusions are spherical in
shape [as b 00 = 2aÿ5/5 for a = b in Eq. (A4a)] as in
case of pure shear. This implies that the bulk viscosity
of a medium containing spherical inclusions will be
same in coaxial (pure shear) and non-coaxial (simple
shear) deformations. However, they will have di�erent
values when the inclusions are non-spherical. Substitut-
ing the expression of b 00 in Eq. (4), the dimensionless
bulk shear viscosity � ZsZ � can be written as a function of
the axial ratio (R=a/b ) of inclusions.

For the linear anisotropic model:
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Zs

Z
� 1

� 4rv

�R2 ÿ 1�
5
2

R2 � 1

1

2�R2 � 2�
�������������������R2 ÿ 1�

p
ÿ 3RO

: �5a�

For the planar anisotropic model:

Zs

Z
� 1

� 4rv

�R2 ÿ 1�
5
2

R2 � 1

1

�2� R2�
�������������������1ÿ R2�p

ÿ 3Rcosÿ1R
:

�5b�
The normalized bulk viscosity is essentially con-

trolled by two dimensionless parameters: the axial
ratio (R ) and the volume concentration (rv) of rigid
inclusions. Eqs. (3a) and (5a) reveal that, in linear ani-
sotropic models, with increase in elongation of rigid
inclusions (i.e. increase in R ) the normal viscosity gen-
erally increases with increasing gradients (Fig. 2a),
whereas the shear viscosity increases to a maximum,

and then decreases asymptotically down to a station-
ary value (Fig. 2b). In general, compared to normal
viscosity, shear viscosity is much less sensitive to the
axial ratio.

In planar anisotropic models, the normal viscosity
increases little with increasing ¯atness (i.e. decreasing
R ) of inclusions [Eqs. (3b) and (5b)], but the variation
assumes a steep gradient when the latter is high
(Fig. 2c), giving rise to a large value of normal vis-
cosity, e.g. Zp/Z = 25 for R = 0.01 at rv = 0.4. Shear
viscosity is relatively less sensitive to the shape of in-
clusions. In contrast to normal viscosity, it shows an
inverse variation with increasing ¯atness (Fig. 2d).

2.4. Anisotropic factor d

It appears from Eqs. (3a), (3b), (5a) and (5b) that
the degree of mechanical anisotropy, d � Zp

Zs
, is greater

than 1 for all values of R and rv (Fig. 3) implying that
the normal viscosity of an anisotropic body will be
essentially greater than the shear viscosity, as in the
case of multilayers (Weijermars, 1992).

Fig. 2. Calculated plots of normal and shear viscosities Zp, Zs (normalized to matrix viscosity Z ) vs. axial ratio of inclusion R. (a) and (b) Aniso-

tropic models with linear fabric. (c) and (d) Anisotropic models with planar fabric. The curves are drawn for values of volume concentration rv
at an interval of 0.04.
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In linear anisotropic models, for a constant volume
fraction rv, with increase in axial ratio R (= a/b ), d
increases with increasing gradients (Fig. 3a), whereas
for a constant axial ratio, with the increase in volume
concentration rv, d increases but with decreasing gradi-
ents (Fig. 3b). If the axial ratio of rigid inclusions is
around 1.5, the anisotropic factor tends to be virtually
insensitive to the volume concentration. Similarly, for
low volume concentration of rigid inclusions, d
depends little on the axial ratio (Fig. 3a).

The factor d for anisotropic models with a planar
fabric is greater than 1 for all values of R and rv, and
its magnitude increases little with increasing ¯atness or
decreasing axial ratio of the rigid inclusions, but jumps
to large values at very low values of axial ratio
(Fig. 3c).

2.5. Longitudinal and transverse normal viscosity

To ®nd the longitudinal normal viscosity (ZPL) in
anisotropic models with linear fabrics, consider a pure
shear ¯ow with the bulk extension parallel to the linear
fabric, i.e. e11 = e, e33 = ÿe and e12=e13=e23=0 in
Eq. (A3). Following the method adopted in the earlier
cases, we have:

ZPL �
"
1� rv

2

(
1

ab4
1

a 00

 
1� a

00
0

b
00
0

!)#
Z: �6�

Eq. (6) shows that the bulk strength of a medium is
greatly enhanced due to the presence of a fabric of
elongate inclusions. With increase in axial ratio (R =
a/b ) of the inclusions, the longitudinal viscosity
increases with increasing gradients (cf. Fig. 2a). The
phenomenon is similar to the control exerted by the
aspect ratio of ®bres on the tensile strength of a ®bre-
reinforced metal (Kelly and Tyson, 1965).

Under the condition of bulk extension perpendicular
to the linear fabric, [e11 = 0, e22 = e, e33 =ÿe and e12
= e13 =e23 = 0 in Eq. (A3)], it can be shown from
Eq. (A3) that the transverse normal viscosity has the
expression:

ZPT �
�
1� rv

ab4
1

a 00

�
Z: �7�

It may be noted that, when a = b, Eqs. (6) and (7)
become identical, as a00 = b00, and give rise to an ex-
pression (1 + 2.5 rv)Z (as a0 ' = 2/5 aÿ5). For non-
spherical shapes (a $ b ), a00 $ b00, and thereby, ZPL
and ZPT have di�erent values. The anisotropic factor
�s � ZPL

ZPT
� can be written as:

s �
a5a

0
0 �

1

2
R4

 
1� a

00
0

b
00
0

!
rv

a5a 00 � R4rv

: �8�

In the model under consideration, a > b, a00 > b00
[Eq. (A4b)]. The value of the factor s in Eq. (8) is,
therefore, greater than 1. The result suggests that the
normal viscosity in the ¯ow along a linear fabric is
essentially greater than that across the fabric. The
axial ratio (R ) and the volume density (rv) of prolate
inclusions are the principal parameters in determining
the degree of anisotropy. For a constant volume den-
sity of rigid inclusions, with increase in axial ratio of

Fig. 3. (a) and (b) Variations of anisotropy factor d with change in

axial ratio of rigid inclusions R and volume concentration (rv) in

anisotropic model with linear fabric. Intervals of rv and R are 0.04

and 0.8, respectively. (c) d vs. R variations in anisotropic models

with planar fabric. Interval of rv = 0.08.
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inclusions the anisotropic factor s increases with
increasing gradients (Fig. 4a). On the other hand, for a
constant axial ratio, with increase in rv the anisotropic
factor increases, but lies within a limit (Fig. 4b), e.g. s
< 3 for R = 6. The factor s does not vary signi®-
cantly with the change in volume concentration when
elongate inclusions have low axial ratios. It is, there-
fore, evident that a linear fabric of short grains cannot
develop a strong mechanical anisotropy in the rocks
even if the grains occupy a large volume proportion.

3. Discussion

The analysis reveals that in homogeneous rocks con-
taining a shape fabric of rigid inclusions the normal
viscosity is generally greater than the shear viscosity,
as is the case with laminated orthotropic media (Wei-
jermars, 1992). Whereas the ratio of normal and shear

viscosities, i.e. the anisotropic factor d (Honda, 1986),
in laminated media shows a proportional relationship
to the viscosity ratio of the sti� and the soft layers
(Weijermars, 1992), that in media with a shape fabric
is directly proportional to the axial ratio of the rigid
inclusions. The fabric-controlled mechanical aniso-
tropy can be large (say d = 20), as in the case of
layered rocks, if the inclusions are extremely ¯at (with
a/b ratio less than 0.01; Fig. 3c).

The volume concentration of rigid inclusions is
another factor that controls the degree of anisotropy.

Fig. 5. Anisotropic ¯ow in a pitch model containing a linear fabric

of rigid inclusions. The axial ratio of individual inclusions is 15. The

model ¯owed radially under its own weight. A passive marker rep-

resents the bulk strain in the model. This marker is circular in the in-

itial state (top) and elliptical after deformation (bottom). Scale bar: 1

cm.

Fig. 4. (a) and (b) Variations of anisotropy factor s with change in

axial ratio of rigid inclusions R and volume concentration (rv) in

anisotropic model with linear fabric. Intervals of rv and R are 0.06

and 0.8, respectively.
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The mechanical anisotropy is apparently likely to be
larger for larger volume concentration rv. However,
the analysis indicates that, for a given axial ratio of
the inclusions, the degree of anisotropy does not
increase linearly with increasing volume concentration,
but tends to have a stationary value (d 1 3, when a/b
= 6).

The theoretical result that the viscosity in the bulk
¯ow parallel to a linear fabric is greater than that
across the fabric [Eq. (8)] has been tested with viscous
pitch models. The viscosity of pitch was 1.5� 106 Pa s
at room temperature (308C). The pitch block had
oriented rigid sticks in a certain volume proportion.
The top surface of the model was stamped with a cir-
cular mark encircling the portion containing rigid
sticks. The model ¯owed laterally, and underwent ¯at-
tening type of deformation under its own weight. The
circular mark was deformed into an elliptical shape
due to anisotropic ¯ow. The long axis of the bulk-
strain marker was at right angles to the linear fabric
(Fig. 5), implying that the viscosity along the fabric is
greater than that across the fabric. The axial ratio of
the strain marker is a direct measure of the degree of
anisotropy s. For a volume fraction of 0.02 and an
aspect ratio of rigid sticks of 15, the axial ratio of the
strain marker was 1.2, which closely matches with the
value of anisotropic factor obtained from Eq. (8).

In the course of deformation, prolate inclusions in a
medium progressively get reoriented towards the bulk
extension direction, eventually giving rise to a linear
fabric. As a consequence, the bulk viscosity in the
extension direction will increase in concert with fabric
development. This implies that during progressive
stretching the ¯ow will experience more and more re-
sistance along the extension direction, similar to work
hardening in the direction of rolling of a metal sheet.

The limitations of the present model adhere to the
assumptions that the embedding medium is Newtonian
and there is no volume change. The model also
assumes that the rigid inclusions are non-clustering
and non-interacting. Understandably, such an assump-
tion holds at lower volume concentration of rigid
bodies in the matrix and the theory is likely to break
down above a critical volume fraction.
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Appendix A. General derivations

In this section we present the general mathematical
derivations that have been utilized for the analysis of
viscosity under speci®c kinematic conditions in the
main text. The mathematical formulation is entirely
based on Je�ery's (1922) theory on the mechanics of
¯uid containing ellipsoidal rigid inclusions.

Let us consider an in®nitely extended viscous med-
ium of viscosity Z, containing spheroidal rigid in-
clusions of identical shape and orientation. Let the
axial dimensions of individual inclusions be a, b and c.
Models with planar fabric have inclusions of dimen-
sions a < b = c, whereas those with linear fabric have
inclusions with dimensions a> b = c. A Cartesian co-
ordinate (x1, x2, x3) is chosen with x1 and x3 axes par-
allel to a and c axial directions, respectively (Fig. 1).
With respect to this co-ordinate system, the kinematic
state of the bulk medium is represented by a velocity
gradient tensor:

Lij �
24 e11 e12 e13
e12 e22 e23
e13 e23 e33

35�
24 0 o12 o13

o12 0 o23

o13 o23 0

35: �A1�

The ®rst and second terms in Eq. (A1) are the dis-
tortion and rotation (spin) tensors, respectively. The
rotation tensor will not contribute to the work done
during deformation and only the six strain rate com-
ponents in the distortion tensor are signi®cant. Of
these six strain rates, ®ve are independent because
there are no volume changes in the present model. Let
us take a volume, V, in the medium, which is much
larger in size compared to individual inclusions. There
are n inclusions within the volume under consider-
ation. The energy required per unit time for the defor-
mation of the volume is:

dE0

dt
� 2VZ

ÿ
e211 � e222 � e233 � 2e212 � 2e223 � 2e213

��
32

3
pnZ�Ae11 � Be22 � Ce33 � 2De12 � 2Ee13

� 2Fe23�

�A2�

(Je�ery, 1922). The second part in Eq. (A2) represents
the rate of additional energy to be spent due to the
presence of rigid inclusions, where A, B, C . . . are con-
stants that depend on the axial dimensions of individ-
ual inclusions and the components of bulk strain-rate
tensor, and can be expressed as (equation 60 of Je�ery,
1922):
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dw

dt
� 16

3
pnZ

8<: 1

2b2a 00

 
e233 � e222 �

a
00
0

b
00
0

e211

!

� 2

 
e212 � e213

b
0
0
�a2 � b2� �

e223
2b2a 00

!9=; �A3�

where a0 ', b0 ' and a00, b00 are geometrical parameters.
After equations (10) of Je�ery, 1922, they can be
expressed by integral functions as:

a
0
0 �

�1
0

dl

�b2 � l�3�a2 � l�
1
2

, b
0
0 �

�1
0

dl

�b2 � l�2�a2 � l�
3
2

�A4a�
and

a
00
0 �

�1
0

ldl

�b2 � l�3�a2 � l�
1
2

, b
00
0 �

�1
0

ldl

�b2 � l�2�a2 � l�
3
2

�A4b�
where l is the ellipsoidal co-ordinate of a point with
respect to the centre of an inclusion. The solutions of
Eqs. (A4a) and (A4b) are as follows: when a> b,
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and when a< b,

a
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1
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R is the axial ratio (a/b ) of rigid inclusions. It may
be noted that these equations are comparable to
equations (67) and (68) of Je�ery (1922). Eqs. (A3),
(A5a) and (A5b) indicate that the shape of rigid in-
clusions and the strain-rate components control the
rate of additional work and thereby, the bulk viscosity
of the medium, as in Eq. (1).

Normal viscosity

If e is the rate of pure shear ¯ow with principal
extension along a axial direction, then e11 = e, e33 =
ÿe, e12 = e13 = e23 = 0. It can be shown that the ex-
pression for the rate of additional work in Eq. (A3) is:

dw

dt
� 8

3
pnZ

1

b2

"
a
00
0

a 00b
00
0

� 1

a 00

#
e2,

which can be rearranged as:

dw

dt
� 2VpnZ

"
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ab4

 
a
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a 00b
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0

� 1

a 00

!#
e2

where Vp is the volume of individual inclusions. From
Eq. (1), the rate of total work done is:

dE0

dt
� 4VZe2

"
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2
rv

1

ab4
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a 00
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00
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b
00
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If the bulk viscosity is represented by Zp, the rate of
work done for the ¯ow in the volume, V, is:

dE0

dt
� 4VZPe

2: �A7�

Comparing Eqs. (A6) and (A7), we have the ex-
pression of normal viscosity:

ZP �
"
1� 1

2

rv
ab4

1

a 00

 
1� a

00
0

b
00
0

!#
Z: �A8�

Shear viscosity

Let us now consider a simple shear ¯ow parallel to
the fabric at a rate g (Fig. 1b). Then, e13 = g/2, and
all other strain-rate components in Eq. (A1) are zero.
Under this kinematic condition,

dw

dt
� 16

3
pnZ

"
g2

2b
0
0�a2 � b2�

#
:

The total strain energy in the deformation of
volume, V, is

dE0

dt
� ZVg2 � 2rvV

ab2

"
1

b
0
0�a2 � b2�

#
Zg2: �A9�

Comparing Eqs. (A7) and (A9), the expression of
shear viscosity follows:

Zs �
�
1� 2rv

ab2�a2 � b2�
1

b 00

�
Z: �A10�
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